Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
نویسندگان
چکیده
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features. Keywords—Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg– Marquardt algorithm.
منابع مشابه
A Comparison Between GA and PSO Algorithms in Training ANN to Predict the Refractive Index of Binary Liquid Solutions
A total of 1099 data points consisting of alcohol-alcohol, alcohol-alkane, alkane-alkane, alcohol-amine and acid-acid binary solutions were collected from scientific literature to develop an appropriate artificial neural network (ANN) model. Temperature, molecular weight of the pure components, mole fraction of one component and the structural groups of the components were used as input paramet...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کاملClassification of mental task from EEG data using neural networks based on particle swarm optimization
The brain–computer interface (BCI) is a system that transforms the brain activity of different mental tasks into a control signal. The system provides an augmentative communication method for patients with severe motor disabilities. In this paper, a neural classifier based on improved particle swarm optimization (IPSO) is proposed to classify an electroencephalogram (EEG) of mental tasks for le...
متن کاملFeature Selection Using Evolutionary Functional Link Neural Network for Classification
Received Sep 17, 2017 Revised Nov 18, 2017 Accepted Nov 23, 2017 Computational time is high for Multilayer perceptron (MLP) trained with back propagation learning algorithm (BP) also the complexity of the network increases with the number of layers and number of nodes in layers. In contrast to MLP, functional link artificial neural network (FLANN) has less architectural complexity, easier to tr...
متن کاملAn Intelligent System for Classification of the Communication formats Using PSO
Text Automatic identification of digital signal types is of interest for both civil and military applications. This paper presents an efficient signal type identifier that includes a variety of digital signals. In this method, a combination of higher order moments (HOM) and higher order cumulants (HOC) are used as the features. A multi-layer perceptron neural network with SASS learning algorith...
متن کامل